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1

Introduction

The work of Hodgkin and Huxley on nerve conduction has
long been recognized as an outstanding scientific achievement.
Their papers were published in 1952 [Hodgkin and Huxley
(1952a,b,c,d)] and they received a Nobel prize in physiology for
their research in 1961. Hodgkin and Huxley’s work was at once a
triumphant culmination of many years of theoretical and experi-
mental work by research physiologists and a pioneering effort that
set the direction and defined the goals for much of the ensuing
research in biophysics.

The purpose of this book is, first, to provide an introductory
description of the work of Hodgkin and Huxley and the later work
that is based on the techniques that they introduced. Our main
emphasis is on the theoretical aspect of the Hodgkin—-Huxley work,
that is, the derivation and analysis of their mathematical models
(nonlinear ordinary and partial differential equations); the second
purpose of this book is to describe some of the mathematics that is
used to study these differential equations.

The hope is that this book will indicate to some biologists the
importance of the mathematical approach and will serve as an
introduction for mathematicians to the mathematical problems in
the field. However, this discussion is bound to be unsatisfactory to
many readers. The biologists will find the description of the
physiology simplistic, crude, if not actually misleading, and they
may also be dubious about the value of conclusions that can be
drawn from the mathematical analysis. Mathematicians who are
accustomed to the precision and stability of physics and engineer-
ing, will find the inherent uncertainty of the parameters in the
models dismaying, if not disagreeable. Also, despite some very
successful analysis, the mathematical problems raised by these
models remain largely unsolved.
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Nevertheless, this discussion is useful because it emphasizes
certain questions that must be resolved in the mathematical study
of biological problems. The reply to the biologist who doubts the
value of mathematical techniques is that those doubts may possibly
be well founded. However, it is also true that mathematical results
have shed significant light on certain questions in biology. The
important activity should consist not in expressing doubts, but in
advancing the study of the mathematical models to the point where
it can be shown clearly that they are or are not an important aspect
of biological study. To the mathematician who finds the problems
difficult or unattractive esthetically, the reply is even simpler.
These problems are here, and criticizing their origin or aesthetic
value will not make them go away.

We shall assume that the reader is familiar with basic concepts
from electricity, that is, potential, current, resistance, the units in
which these are measured, and Ohm’s law. Since capacitance is a
somewhat less elementary electrical notion and because capaci-
tance plays a very important role in the derivation of the
Hodgkin—Huxley equations, a definition and elementary discussion
of capacitance have been included in the short Appendix at the end
of this book.

The problem of how a nerve impulse travels along an axon has a
long and interesting history. A brief summary of this history and a
number of references may be found in Scott (1975). Here we shall
merely point out a couple of the results that made the work of
Hodgkin and Huxley possible. The membrane that surrounds the
axon had been discovered and its capacitance measured by Fricke
(1923). Cole (1949) had pointed out that the important quantity to
be measured was the potential difference across the membrane.
Equally important was the discovery by Young (1936) of the squid
giant axon. The unusually large diameter of this axon (about 0.5
mm) made experimental work possible.

The work of Hodgkin and Huxley, which was a study of how a
nerve impulse travels along the squid giant axon, consisted of two
parts. The first was the development and application of an experi-
mental technique called the voltage-clamp method, which was
invented by Cole. By using the voltage-clamp method, Hodgkin
and Huxley obtained extensive quantitative data concerning the
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electrical properties and activities of the axon. The second part of
their work consisted in deriving a mathematical model (a four-
dimensional system of nonlinear ordinary differential equations)
that summarized the quantitative experimental data. They then
carried out a numerical analysis of the differential equations. As
will be described later, that numerical analysis showed that the
differential equations were remarkably successful in predicting a
wide variety of experimental results.

The work of Hodgkin and Huxley had the additional importance
that it set a direction for experimental and theoretical study of
other electrically active cells, that is, cells whose electrical proper-
ties change during the normal functioning of the cells. Voltage-
clamp methods have been developed for the study of myelinated
nerve fiber (the squid axon has a particularly simple structure and
is termed an unmyelinated axon), striated muscle fiber, and two
kinds of cardiac fiber. For each of these, a mathematical model has
been derived by using basically the same approach as that used by
Hodgkin and Huxley in their study of the squid axon.

The mathematical analysis of the Hodgkin-Huxley equations
and the analogous models for other electrically active cells consists
of two different parts. The first part is numerical analysis, that is,
computation of approximate solutions of the differential equations.
Hodgkin and Huxley themselves carried out extensive numerical
analysis in their original papers and obtained the most outstanding
result of the theory: the prediction of the velocity of the nerve
impulse. However, as we shall see in Chapter 2, the equations can
be used to predict or describe many other experimental phenom-
ena.

Many other numerical analyses of the Hodgkin-Huxley equa-
tions have since been made, and numerical analyses, have, until
now, been the most useful results for physiologists. There are,
however, two serious drawbacks to numerical analysis. First, al-
though numerical analysis can yield much useful information (as in
the example of the velocity of the nerve impulse), there are many
important questions that cannot be approached by use of numeri-
cal analysis. Numerical analysis cannot yield an explanation of
how the potential ¥ and the sodium and potassium currents are
related. As will later be shown, the simplest and crudest qualitative
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analysis yields far more information of this kind. Second, numeri-
cal analysis requires the assignment of strict numerical values to
the parameters that occur in the differential equations. As we shall
see later, the values of the parameters, indeed the very form of
certain of the functions, are not known with much accuracy.
Consequently, it is important to study mathematically some class
or family of equations to which the Hodgkin—Huxley equations
belong, as well as to study the equations themselves.

In Chapter 2 the work of Hodgkin and Huxley is described in
some detail: first the experimental work and then the derivation of
the equations. It is important to see a fairly detailed description of
the experimental results and their interpretation even for a reader
whose primary interest is the mathematical analysis of the equa-
tions. Only a knowledge of the origin of the equations makes clear
the status of the equations and the significance to physiologists of
various mathematical problems concerning the equations. Chapter
2 also summarizes some of the numerical analysis that was carried
out by Hodgkin and Huxley. Some of this analysis was carried out
on the equatons. However, Hodgkin and Huxley also derived from
this original system a system of nonlinear partial differential equa-
tions (which we will term the full Hodgkin—Huxley equations) and
they carried out a numerical analysis to find traveling wave solu-
tions of the partial differential equations. It was this analysis that
yielded the prediction of the velocity of the nerve impulse.

In Chapter 3 we describe some other mathematical models of
nerve conduction including various simplifications and modifica-
tions of the Hodgkin—Huxley equations. Chapter 4 describes some
mathematical models of other electrically active cells that were
obtained by using the basic techniques and ideas introduced by
Hodgkin and Huxley.

In Chapter 5 we turn to the problem of analyzing mathemati-
cally the models that have been described. This analysis requires
two quite distinct kinds of mathematics. First, we need material
from the subject of ordinary differential equations including the
theory of singularly perturbed equations. This material is sum-
marized in Chapter 5. In order to study the full Hodgkin—Huxley
equations, considerable material from partial differential equations,
in particular the theory of reaction-diffusion equations, is needed.
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Rather than attempting to present this material, we have merely
described it very briefly and cited a few references. There are
several reasons for emphasizing the study of the ordinary differen-
tial equations and postponing a detailed study of the partial
differential equations. First, the two kinds of theory are essentially
independent of one another and represent two quite different
subjects. Second, the ordinary differential equations are derived
directly from the experimental data and hence are closer to the real
world of physiology. [Very good results are obtained from studying
the full Hodgkin-Huxley equations, but it is questionable whether
the corresponding partial differential equations for other electri-
cally active cells are realistic. See McAllister, Noble, and Tsien
(1975), page 4.] Finally, it seems practical to deal with the ordinary
differential equations in some detail first because this will help
guide future work on the partial differential equations. For exam-
ple, in Chapter 6 we shall discuss the reasons why it seems strategic
to regard our models as singularly perturbed systems. Moreover, by
using the singularly perturbed viewpoint we will obtain useful and
enlightening information about how the electrically active cells
behave. If more extensive research continues to show that the
singularly perturbed viewpoint is valid and informative, then it will
follow that the corresponding partial differential equations should
be regarded as singularly perturbed systems. But that would sug-
gest the use of very specific theory of singularly perturbed partial
differential equations rather than general reaction-diffusion theory.
Thus, to some extent, the study of the partial differential equations
awaits the resolution of questions concerning the ordinary differen-
tial equations.

In Chapter 6 we use the theory from Chapter 5 to study the
models derived earlier. In particular, we make a detailed study of
the Noble model of the cardiac Purkinje fiber. Also we summarize
very briefly some of the work on traveling waves in nerve conduc-
tion, that is, traveling wave solutions of the full Hodgkin—Huxley
equations.



